
Unit 5 Introduction to Swings & Applets

Swings:

AWT is used for creating GUI in Java. However, the AWT components are internally

depends on native methods like C functions and operating system equivalent and hence

problems related to portability arise (look and feel. Ex. Windows window and MAC

window). And, also AWT components are heavy weight. It means AWT components take

more system resources like memory and processor time.

Due to this, Java soft people felt it is better to redevelop AWT package without

internally taking the help of native methods. Hence all the classes of AWT are extended to

form new classes and a new class library is created. This library is called JFC (Java

Foundation Classes).

Java Foundation Classes (JFC):

JFC is an extension of original AWT. It contains classes that are completely portable,

since the entire JFC is developed in pure Java. Some of the features of JFC are:

1. JFC components are light-weight: Means they utilize minimum resources.

2. JFC components have same look and feel on all platforms. Once a component is

created, it looks same on any OS.

3. JFC offers “pluggable look and feel” feature, which allows the programmer to

change look and feel as suited for platform. For, ex if the programmer wants to

display window-style button on Windows OS, and Unix style buttons on Unix, it is

possible.

4. JFC does not replace AWT, but JFC is an extension to AWT. All the classes of JFC

are derived from AWT and hence all the methods in AWT are also applicable in

JFC.

So, JFC represents class library developed in pure Java which is an extension to AWT and

swing is one package in JFC, which helps to develop GUIs and the name of the package is

import javax.swing.*;

Here x represents that it is an ‘extended package’ whose classes are derived from

AWT package.

MVC Architecture:

In MVC terminology,
Model corresponds to the state information associated

with the component (data).

For example, in the case of a check box, the model

contains a field that indicates if the box is checked

or unchecked.
The view visual appearance of the component based

upon model data.

Unit 5 Introduction to Swings & Networking

The controller acts as an interface between view and model. It intercepts all

the requests i.e. receives input and commands to Model / View to change

accordingly.

Although the MVC architecture and the principles behind it are conceptually sound,

the high level of separation between the view and the controller is not beneficial for Swing

components. Instead, Swing uses a modified version of MVC that combines the view and the

controller into a single logical entity called the UI delegate. For this reason, Swing’s approach

is called either the Model-Delegate architecture or the Separable Model architecture.

Figure : With Swing, the view and the controller are combined into a UI-delegate object

So let’s review: each Swing component contains a model and a UI delegate. The

model is responsible for maintaining information about the component’s state. The UI

delegate is responsible for maintaining information about how to draw the component on the

screen. In addition, the UI delegate reacts to various events.

Difference between AWT and Swings:

AWT Swing

Heavy weight Light weight

Look and feel is OS based Look and feel is OS independent.

Not pure Java based Pure Java based
Applet portability: Web-browser is support Applet portability: A plug-in is

 required

Do not support features like icon and tool It supports.

tip.

The default layout manager for applet: The default layout manger for content

flow and frame is border layout. pane is border layout.

2

Unit 5 Introduction to Swings & Networking

Components and Containers:

A Swing GUI consists of two key items: components and containers.

However, this distinction is mostly conceptual because all containers are also

components. The difference between the two is found in their intended purpose: As the term

is commonly used, a component is an independent visual control, such as a push button or

slider. A container holds a group of components. Thus, a container is a special type of

component that is designed to hold other components.

Furthermore, in order for a component to be displayed, it must be held within a

container. Thus, all Swing GUIs will have at least one container. Because containers are

components, a container can also hold other containers. This enables Swing to define what

is called a containment hierarchy, at the top of which must be a top-level container.

Components:

In general, Swing components are derived from the JComponent class. JComponent

provides the functionality that is common to all components. For example, JComponent

supports the pluggable look and feel. JComponent inherits the AWT classes Container and

Component. All of Swing’s components are represented by classes defined within the

package javax.swing. The following figure shows hierarchy of classes of javax.swing.

3
.

Unit 5 Introduction to Swings & Networking

Containers:

Swing defines two types of containers.
1. Top-level containers/ Root containers: JFrame, JApplet,JWindow, and JDialog.

As the name implies, a top-level container must be at the top of a containment

hierarchy. A top-level container is not contained within any other container.

Furthermore, every containment hierarchy must begin with a top-level container.

The one most commonly used for applications are JFrame and JApplet.

Unlike Swing’s other components , the top-level containers are heavyweight.
Because they inherit AWT classes Component and Container.

Whenever we create a top level container four sub-level containers are

automatically created:

Glass pane (JGlass)

Root pane (JRootPane)

Layered pane(JLayeredPane)

Content pane

Glass pane: This is the first pane and is very close to the monitor’s screen. Any

components to be displayed in the foreground are attached to this glass pane. To

reach this glass pane we use getGlassPane() method of JFrame class, which return

Component class object.

Root Pane: This pane is below the glass pane. Any components to be displayed in the

background are displayed in this frame. To go to the root pane, we can use

getRootPane() method of JFrame class, which returns JRootPane object.

Layered pane: This pane is below the root pane. When we want to take several

components as a group, we attach them in the layered pane. We can reach this

pane by calling getLayeredPane() method of JFrame class which returns

JLayeredPane class object.

Conent pane: This is bottom most of all, Individual components are attached to this

pane. To reach this pane, we can call getContentPane() method of JFrame class

which returns Container class object.

2. Lightweight containers – containers do inherit JComponent. An example of a

lightweight container is JPanel, which is a general-purpose container. Lightweight

containers are often used to organize and manage groups of related components.

4

Unit 5 Introduction to Swings & Networking

JFrame:

We know frame represents a window with a title bar and borders. Frame becomes the

basis for creating the GUIs for an application because all the components go into the frame.

To create a fram, we have to create an object to JFrame class in swing as

JFrame jf=new JFrame(); // create a frame without title

JFrame jf=new JFrame(“title”); // create a frame with title

To close the frame, use setDefaultCloseOperation() method of JFrame class

setDefaultCloseOperation(constant)

where constant values are
This closes the application upon clicking the

JFrame.EXIT_ON_CLOSE

close button
This closes the application upon clicking the

JFrame.DISPOSE_ON_CLOSE

close button
This will not perform any operation upon

JFrame.DO_NOTHING_ON_CLOSE clicking close button
This hides the frame upon clicking close

JFrame.HIDE_ON_CLOSE

button

Example:
import javax.swing.*;

class FrameDemo

{

public static void main(String arg[])

{

JFrame jf=new JFrame("PVPSIT");

jf.setSize(200,200);

jf.setVisible(true);

jf.setDefaultCloseOperation(JFrame.HIDE_ON_CLOSE);

}

}

Example: To set the background

import javax.swing.*;
import java.awt.*;

class FrameDemo

{

public static void main(String arg[])

{

JFrame jf=new JFrame("PVPSIT");

jf.setSize(200,200);

jf.setVisible(true);

Container c=jf.getContentPane();

c.setBackground(Color.green);

}

}
5

Unit 5 Introduction to Swings & Networking

JApplet:

Fundamental to Swing is the JApplet class, which extends Applet. Applets that use

Swing must be subclasses of JApplet. JApplet is rich with functionality that is not found in

Applet. For example, JApplet supports various “panes,” such as the content pane, the glass

pane, and the root pane.

One difference between Applet and JApplet is, When adding a component to an

instance of JApplet, do not invoke the add() method of the applet. Instead, call add() for the

content pane of the JApplet object.

The content pane can be obtained via the method shown here:

Container getContentPane()
The add() method of Container can be used to add a component to a content pane.

Its form is shown here:

void add(comp)

Here, comp is the component to be added to the content pane.

JComponent:

The class JComponent is the base class for all Swing components except top-level

containers. To use a component that inherits from JComponent, you must place the

component in a containment hierarchy whose root is a top-level SWING container.

Constructor: JComponent();

The following are the JComponent class's methods to manipulate the appearance of

the component.

public int getWidth ()
Returns the current width of this component

in pixel.

public int getHeight ()
Returns the current height of this component

in pixel.

public int getX()
Returns the current x coordinate of the

component's top-left corner.

public int getY ()
Returns the current y coordinate of the

component's top-left corner.

 Returns this component's Graphics object
public java.awt.Graphics getGraphics() you can draw on. This is useful if you want

 to change the appearance of a component.

public void setBackground (java.awt.Color bg) Sets this component's background color.

public void setEnabled (boolean enabled)
Sets whether or not this component is

enabled.

public void setFont (java.awt.Font font)
Set the font used to print text on this

component.

public void setForeground (java.awt.Color fg) Set this component's foreground color.

public void setToolTipText(java.lang.String text) Sets the tool tip text.

public void setVisible (boolean visible)
Sets whether or not this component is

visible.

6

Unit 5 Introduction to Swings & Networking

Text Fields

The Swing text field is encapsulated by the JTextComponent class, which extends

JComponent. It provides functionality that is common to Swing text components. One of its

subclasses is JTextField, which allows you to edit one line of text. Some of its constructors

are shown here:

JTextField()

JTextField(int cols)

JTextField(String s, int cols)

JTextField(String s)

Here, s is the string to be presented, and cols is the number of columns in the text

field.

The following example illustrates how to create a text field. The applet begins by

getting its content pane, and then a flow layout is assigned as its layout manager. Next, a

JTextField object is created and is added to the content pane.

Example:
import java.awt.*;

import javax.swing.*;

/*

<applet code="JTextFieldDemo" width=300 height=50>
</applet>

*/

public class JTextFieldDemo extends JApplet

{

JTextField jtf;

public void init()

{

// Get content pane

Container contentPane = getContentPane();

contentPane.setLayout(new FlowLayout());
// Add text field to content

pane jtf = new JTextField(10);

contentPane.add(jtf);
}

}

The JButton Class

The JButton class provides the functionality of a push button. JButton allows an

icon, a string, or both to be associated with the push button. Some of its constructors are

shown here:
JButton(Icon i)

JButton(String s)

JButton(String s, Icon i)

Here, s and i are the string and icon used for the button.

Example:

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;

7

Unit 5 Introduction to Swings & Networking

/*
<applet code="JButtonDemo2" width=250 height=300>

</applet>

*/

public class JButtonDemo2 extends JApplet implements ActionListener

{
JTextField jtf;

public void init()

{

// Get content pane
Container contentPane = getContentPane();

contentPane.setLayout(new FlowLayout());

JButton jb1 = new JButton("BEC");

jb1.addActionListener(this);

contentPane.add(jb1);

// Add buttons to content pane
ImageIcon pvp = new ImageIcon("pvp.jpg");

JButton jb2 = new JButton("PVPSIT",pvp);

jb2.setActionCommand("PVPSIT");

jb2.addActionListener(this);

contentPane.add(jb2);

jtf = new JTextField(10);
contentPane.add(jtf);

}

public void actionPerformed(ActionEvent ae)

{

jtf.setText(ae.getActionCommand());

}

}

Check Boxes:

The JCheckBox class, which provides the functionality of a check box, is a concrete

implementation of AbstractButton. Its immediate super class is JToggleButton, which

provides support for two-state buttons (true or false). Some of its constructors are shown here:

JCheckBox(Icon i)

JCheckBox(Icon i, boolean state)

JCheckBox(String s)

JCheckBox(String s, boolean state)

JCheckBox(String s, Icon i)

JCheckBox(String s, Icon i, boolean state)

Here, i is the icon for the button. The text is specified by s. If state is true, the check

box is initially selected. Otherwise, it is not.

The state of the check box can be changed via the following method:

void setSelected(boolean state)

Here, state is true if the check box should be checked.

8

Unit 5 Introduction to Swings & Networking

When a check box is selected or deselected, an item event is generated. This is

handled by itemStateChanged(). Inside itemStateChanged(), the getItem() method gets

the JCheckBox object that generated the event. The getText() method gets the text for that

check box and uses it to set the text inside the text field.

Example:
import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

/*

<applet code="JCheckBoxDemo2" width=400 height=50>

</applet>

*/

public class JCheckBoxDemo2 extends JApplet implements ItemListener

{

JTextField jtf;

public void init() {

// Get content pane

Container contentPane = getContentPane();

contentPane.setLayout(new FlowLayout());

JCheckBox cb = new JCheckBox("C", true);

cb.addItemListener(this);

contentPane.add(cb);

cb = new JCheckBox("C++");

cb.addItemListener(this);

contentPane.add(cb);

cb = new JCheckBox("Java");

cb.addItemListener(this);

contentPane.add(cb);

// Add text field to the content

pane jtf = new JTextField(15);

contentPane.add(jtf);

}

public void itemStateChanged(ItemEvent ie) {

JCheckBox cb = (JCheckBox)ie.getItem();

jtf.setText(cb.getText());

}

}

9

Unit 5 Introduction to Swings & Networking

Radio Buttons:

Radio buttons are supported by the JRadioButton class, which is a concrete

implementation of AbstractButton. Its immediate superclass is JToggleButton, which

provides support for two-state buttons. Some of its constructors are shown here:

JRadioButton(Icon i)

JRadioButton(Icon i, boolean state)

JRadioButton(String s)

JRadioButton(String s, boolean state)

JRadioButton(String s, Icon i)

JRadioButton(String s, Icon i, boolean state)

Here, i is the icon for the button. The text is specified by s. If state is true, the

button is initially selected. Otherwise, it is not.

Radio buttons must be configured into a group. Only one of the buttons in that group

can be selected at any time. For example, if a user presses a radio button that is in a group,

any previously selected button in that group is automatically deselected. The ButtonGroup

class is instantiated to create a button group. Its default constructor is invoked for this

purpose. Elements are then added to the button group via the following method:

void add(AbstractButton ab)

Here, ab is a reference to the button to be added to the group.

Radio button presses generate action events that are handled by actionPerformed().

The getActionCommand() method gets the text that is associated with a radio button and

uses it to set the text field.

Example:

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

/*

<applet code="JRadioButtonDemo" width=300 height=50>

</applet>

*/

public class JRadioButtonDemo extends JApplet implements ActionListener

{

JTextField tf;

public void init()

{

// Get content pane

Container contentPane = getContentPane();

contentPane.setLayout(new FlowLayout());

// Add radio buttons to content pane

JRadioButton c = new JRadioButton("C");

c.addActionListener(this);

contentPane.add(c);

10

Unit 5 Introduction to Swings & Networking

JRadioButton cpp = new JRadioButton("C++");

cpp.addActionListener(this);

contentPane.add(cpp);

JRadioButton java = new JRadioButton("JAVA");

java.addActionListener(this);

contentPane.add(java);

// Define a button group

ButtonGroup bg = new ButtonGroup();

bg.add(c);

bg.add(cpp);

bg.add(java);

// Create a text field and add it to the content pane

tf = new JTextField(5); contentPane.add(tf);

}

public void actionPerformed(ActionEvent ae)

{ tf.setText(ae.getActionCommand());

}

}

Combo boxes:

Swing provides a combo box (a combination of a text field and a drop-down list)

through the JComboBox class, which extends JComponent.

A combo box normally displays one entry. However, it can also display a drop-down

list that allows a user to select a different entry. You can also type your selection into the text

field.

Two of JComboBox’s constructors are shown here:

JComboBox()

JComboBox(Vector v)

Here, v is a vector that initializes the combo box. Items are added to the list of

choices via the addItem() method, whose signature is shown here:

void addItem(Object obj)

Here, obj is the object to be added to the combo box.

By default, a JComboBox component is created in read-only mode, which means the

user can only pick one item from the fixed options in the drop-down list. If we want to allow

the user to provide his own option, we can simply use the setEditable() method to make the

combo box editable.

The following example contains a combo box and a label. The label displays an icon.

The combo box contains entries for “PVPSIT”, “BEC”, and “VRSEC”. When a college is

selected, the label is updated to display the flag for that country

11

Unit 5 Introduction to Swings & Networking

Example:

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;

/* <applet code="JComboBoxDemo" width=300 height=100>

</applet>

*/

public class JComboBoxDemo extends JApplet implements ItemListener

{

Container contentPane;

public void init()
{

// Get content pane

contentPane = getContentPane();

contentPane.setLayout(new FlowLayout());

// Create a combo box and add it to the

panel JComboBox jc = new JComboBox();

jc.addItem("pvp");
jc.addItem("bec");
jc.addItem("vrsec");

jc.addItemListener(this);
contentPane.add(jc);

}
public void itemStateChanged(ItemEvent ie)

{
String s = (String)ie.getItem();

JOptionPane.showMessageDialog(null,"You selected:"+s);

}
}

Tabbed Panes:

A tabbed pane is a component that appears as a group of folders in a file cabinet. Each

folder has a title. When a user selects a folder, its contents become visible. Only one of the

folders may be selected at a time. Tabbed panes are commonly used for setting configuration

options.

Tabbed panes are encapsulated by the JTabbedPane class, which extends

JComponent. We will use its default constructor. Tabs are defined via the following method:

void addTab(String str, Component comp)

Here, str is the title for the tab, and comp is the component that should be added to the

tab. Typically, a JPanel or a subclass of it is added.

12

Unit 5 Introduction to Swings & Networking

The general procedure to use a tabbed pane in an applet is outlined here:
1. Create a JTabbedPane object.
2. Call addTab() to add a tab to the pane. (The arguments to this method

define the title of the tab and the component it contains.)

3. Repeat step 2 for each tab.
4. Add the tabbed pane to the content pane of the applet.

The following example illustrates how to create a tabbed pane. The first tab is

titled“Cities” and contains four buttons. Each button displays the name of a city. The second

tab is titled “Colors” and contains three check boxes. Each check box displays the name of a

color. The third tab is titled “Language” and contains radio buttons.

Example:
import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

/*

<applet code="JTabbedPaneDemo" width=400

height=100>

</applet>

*/

public class JTabbedPaneDemo extends JApplet

{

public void init()

{

Container contentPane = getContentPane();

JTabbedPane jtp = new JTabbedPane();

jtp.addTab("Cities", new CitiesPanel());

jtp.addTab("Colors", new ColorsPanel());

jtp.addTab("Language", new LanguagesPanel());

contentPane.add(jtp);

}

}

class CitiesPanel extends JPanel

{

public CitiesPanel()

{

JButton b1 = new JButton("Amaravati");

add(b1);

JButton b2 = new JButton("Hyderabad");

add(b2);

JButton b3 = new JButton("Vijayawada");

add(b3);

JButton b4 = new JButton("Tirupati");

13

Unit 5 Introduction to Swings & Networking

add(b4);

}

}

class ColorsPanel extends JPanel

{

public ColorsPanel()

{

JCheckBox cb1 = new JCheckBox("Red");

add(cb1);

JCheckBox cb2 = new JCheckBox("Green");

add(cb2);

JCheckBox cb3 = new JCheckBox("Blue");

add(cb3);

}

}

class LanguagesPanel extends JPanel

{

public LanguagesPanel()

{

JRadioButton rb1 = new JRadioButton("Telugu");

add(rb1);

JRadioButton rb2 = new JRadioButton("Hindi");

add(rb2);

JRadioButton rb3 = new JRadioButton("English");

add(rb3);

}

}

JLabel :

JLabel is a class of java Swing . JLabel is used to display a short string or an image icon. JLabel

can display text, image or both . JLabel is only a display of text or image and it cannot get focus

. JLabel is inactive to input events such a mouse focus or keyboard focus. By default labels are

vertically centered but the user can change the alignment of label.

Constructor of the class are :

JLabel() : creates a blank label with no text or image in it.

JLabel(String s) : creates a new label with the string specified.

JLabel(Icon i) : creates a new label with a image on it.

JLabel(String s, Icon i, int align) : creates a new label with a string, an image and a specified

horizontal alignment

Commonly used methods of the class are :

getIcon() : returns the image that the label displays

setIcon(Icon i) : sets the icon that the label will display to image i

getText() : returns the text that the label will display

setText(String s) : sets the text that the label will display to string s

JList :

JList is part of Java Swing package . JList is a component that displays a set of Objects and

allows the user to select one or more items . JList inherits JComponent class. JList is a easy way

to display an array of Vectors .

Constructor for JList are :

JList(): creates an empty blank list

JList(E [] l) : creates an new list with the elements of the array.

JList(ListModel d): creates a new list with the specified List Model

JList(Vector l) : creates a new list with the elements of the vector

Commonly used methods are :

method explanation

getSelectedIndex() returns the index of selected item of the list

getSelectedValue() returns the selected value of the element of the list

setSelectedIndex(int i) sets the selected index of the list to i

getSelectedValuesList() returns a list of all the selected items.

getSelectedIndices() returns an array of all of the selected indices, in increasing order

// java Program to create a simple JList

import java.awt.event.*;

import java.awt.*;

import javax.swing.*;

class solve extends JFrame

{

 //frame

 static JFrame f;

 //lists

 static JList b;

 //main class

 public static void main(String[] args)

 {

 //create a new frame

 f = new JFrame("frame");

 //create a object

 solve s=new solve();

 //create a panel

 JPanel p =new JPanel();

 //create a new label

 JLabel l= new JLabel("select the day of the week");

 //String array to store weekdays

 String week[]= { "Monday","Tuesday","Wednesday",

 "Thursday","Friday","Saturday","Sunday"};

 //create list

 b= new JList(week);

 //set a selected index

 b.setSelectedIndex(2);

 //add list to panel

 p.add(b);

 f.add(p);

 //set the size of frame

 f.setSize(400,400);

 f.show();

 }

}

APPLETS

A Java applet is a special kind of Java program that a browser enabled with Java technology

can download from the internet and run. An applet is typically embedded inside a web page

and runs in the context of a browser. An applet must be a subclass of the java.applet.Applet

class. The Applet class provides the standard interface between the applet and the browser

environment.

The Applet class is contained in the java.applet package.Applet contains several methods

that give you detailed control over the execution of your applet.

In addition,java.applet package also defines three interfaces: AppletContext, AudioClip,

and AppletStub.

Applet Basics:

All applets are subclasses of Applet. Thus, all applets must import java.applet. Applets must

also import java.awt. AWT stands for the Abstract Window Toolkit. Since all applets run in a

window, it is necessary to include support for that window by importing java.awt package.

Applets are not executed by the console-based Java run-time interpreter. Rather, they are

executed by either a Web browser or an applet viewer.

Execution of an applet does not begin at main(). Output to your applet’s window is

not performed by System.out.println(). Rather, it is handled with various AWT methods,

such as drawString(), which outputs a string to a specified X,Y location. Input is also

handled differently than in an application.

Once an applet has been compiled, it is included in an HTML file using theAPPLET tag. The

applet will be executed by a Java-enabled web browser when it encounters the APPLET tag

within the HTML file.

To view and test an applet more conveniently, simply include a comment at the head of your

Java source code file that contains the APPLET tag.

Here is an example of such a comment:

/*

<applet code="MyApplet" width=200 height=60>

</applet>

*/

This comment contains an APPLET tag that will run an applet called MyApplet in a window

that is 200 pixels wide and 60 pixels high. Since the inclusion of an APPLET

command makes testing applets easier, all of the applets shown in this tutorial will

contain the appropriate APPLET tag embedded in a comment.

The Applet Class:

Applet extends the AWT class Panel. In turn, Panel extends Container, which

extends Component. These classes provide support for Java’s window-based, graphical

interface. Thus, Applet provides all of the necessary support for window-based activities

Applet Architecture:

An applet is a window-based program. As such, its architecture is different from the so-called

normal, console-based programs .

First, applets are event driven. it is important to understand in a general way how the event-

driven architecture impacts the design of an applet.

Here is how the process works. An applet waits until an event occurs. The AWT notifies the
applet about an event by calling an event handler that has been provided by the applet. Once
this happens, the applet must take appropriate action and then quickly return control to the
AWT.

Applet Initialization and Termination(Applet Life Cycle methods):

It is important to understand the order in which the various methods shown in theskeleton are
called. When an applet begins, the AWT calls the following methods, in this sequence:
1. init()
2. start()

3. paint()

When an applet is terminated, the following sequence of method calls takes place:

1. stop()

2. destroy()

init():init() method is called once—the first time an applet is loaded. The init() method is

the first method to be called. This is where you should initialize variables.

start():The start() method is called after init(). It is also called to restart an applet after it

has been stopped(i.e start() method is called every time, the applet resumes execution).

Paint():The paint() method is called each time your applet’s output must be redrawn. This

situation can occur for several reasons. For example, the window in which the applet is

running may be overwritten by another window and then uncovered. Or the applet window

may be minimized and then restored. paint() is also called when the applet begins execution.

Whatever the cause, whenever the applet must redraw its output, paint() is called. The
paint() method has one parameter of type Graphics.

stop():The stop() method is called when the applet is stopped(i.e for example ,when

the applet is minimized the stop method is called).

destroy():The destroy() method is called when the environment determines that your applet

needs to be removed completely from memory(i.e destroy() method is called when the applet

is about to terminate).The stop() method is always called before destroy().

An Applet Skeleton

Program:

Four methods—init(), start(), stop(), and destroy()—are defined by Applet.

Another, paint(), is defined by the AWT Component class. All applets must import

java.applet. Applets must also import java.awt.

These five methods can be assembled into the skeleton shown

here:

// An Applet

skeleton. import

java.awt.*; import

java.applet.*;

/

*

<applet code="AppletSkel" width=300

height=100>

</app

let>

*

/

public class AppletSkel extends

Applet

{
// Called

first. public

void init()

{

// initialization

}

/* Called second, after init(). Also called

whenever the applet is restarted. */

public void start()

{
// start or resume execution

}

// Called when the applet is

stopped. public void stop()

{
// suspends execution}

/* Called when applet is terminated. This is the

last method executed. */

public void destroy()

{

// perform shutdown activities

}
// Called when an applet's window must be

restored. public void paint(Graphics g)

{
// redisplay contents of window

}

}

Simple Applet programe:

SimpleApplet.java

import java.awt.*;

import java.applet.*;

/*

<applet code="SimpleApplet" width=300 height=100>

</applet>

*/

public class SimpleApplet extends Applet

{

String msg="";

// Called first.

public void init()

{

msg="Hello";

}

/* Called second, after init().

Also called whenever the applet is restarted. */

public void start()

{
msg=msg+",Welcome to Applet";

}

// whenever the applet must redraw its output, paint() is called.

public void paint(Graphics g)

{

g.drawString(msg,20,20);

}

}

Output:

How To Run an Applet Programe:

There are two ways in which you can run an applet:

■ Executing the applet within a Java-compatible Web browser.

■ Using an applet viewer, such as the standard SDK tool, appletviewer. An applet viewer

executes your applet in a window. This is generally the fastestand easiest way to test your

applet.

Using an applet viewer to run applet(demonstrates you to run SimpleApplet.java):

Place the applet tag in comments in java source code.

Note:Code attribute value must be equal to name of class which extends Applet class.

Compiling: javac SimpleApplet.java

Run: AppletViewer SimpleApplet.java

Executing the applet within a Java-compatible Web browser(demonstrates you to run
SimpleApplet.java):

Compiling: javac SimpleApplet.java

Create an Html file and embeded Applet tag in html file.

Attributes in applet tag:
Code(attribute):specify name of applet class to load into browser.

Width(attribute):width of an applet.

Height(attribute):height of an applet.

SimpleApplet.html

<html>

<body>

<applet code="SimpleApplet" width=300 height=100></applet>

</body>

</html>

When you open SimpleApplet.html , SimpleApplet.class applet is loaded into browser.

Note: The Browser must be java enabled to load applet programe.

Simple Applet Display Methods:

As we’ve mentioned, applets are displayed in a window and they use the AWT to perform

input and output.To output a string to an applet, use drawString(), which is a member of the

Graphics class.Graphics class is defined in java.awt package.

void drawString(String message, int x, int y)

Here, message is the string to be output and x and y are x-coordinate ,y-coordinate

respectively. In a Java window, the upper-left corner is location 0,0.

To set the background color of an applet’s window, use setBackground(). To set the

foreground color (the color in which text is shown, for example), use setForeground().

These methods are defined by Component, and they have the following general forms:

void setBackground(Color newColor)

void setForeground(Color newColor)

Here, newColor specifies the new color. The class Color defines the constants shown

here that can be used to specify colors:

Color.black Color.magenta

Color.blue Color.orange

Color.cyan Color.pink

Color.darkGray Color.red

Color.gray Color.white

Color.green Color.yellow

Color.lightGray

For example, this sets the background color to green and the text color to red:

Sample.java

setBackground(Color.green);

setForeground(Color.red);

/* A simple applet that sets the foreground and background colors and outputs a string. */

import java.awt.*;

import java.applet.*;

/*

<applet code="Sample" width=300 height=200>

</applet>*/

public class Sample extends Applet

{
String msg;

public void init()

{

setBackground(Color.gray);

setForeground(Color.white);

msg = "Inside init() --";

}
// Initialize the string to be displayed.

public void start()

{

msg += " Inside start() --";

}
// Display msg in applet window.

public void paint(Graphics g)

{ msg += " Inside paint().";

g.drawString(msg, 10, 30);

}

Output :

Requesting Repainting:

Whenever your applet needs to update the information displayed in its window, it

simply calls repaint().The repaint() method is defined by the AWT. It causes the AWT

run-time system to execute a call to your applet’s update() method, which,

in its default implementation, calls paint().

The simplest version of repaint() is shown here:

void repaint()
This version causes the entire window to be repainted. The following version
specifies a region that will be repainted:

void repaint(int left, int top, int width, int height)
Here, the coordinates of the upper-left corner of the region are specified by left and top, and
the width and height of the region are passed in width and height. These

dimensions are specified in pixels. You save time by specifying a region to repaint.

The other two versions of

repaint():

void repaint(long maxDelay)

void repaint(long maxDelay, int x, int y, int width, int height)
Here, maxDelay specifies the maximum number of milliseconds that can elapse
before update() is called.

Using the Status window:

In addition to displaying information in its window, an applet can also output a message
to the status window of the browser or applet viewer on which it is running. To do so,
call
showStatus() with the string that you want displayed.

// Using the Status Window.

 import java.awt.*;

import java.applet.*;

/*<applet code="StatusWindow" width=300

height=300></applet>*/

public class StatusWindow extends

Applet

{

public void init()

{setBackground(Color.cyan);

}

// Display msg in applet window.

public void paint(Graphics g)

{

g.drawString("This is in the applet window.", 10, 20);

showStatus("This is shown in the status window.");

}

}

Output:

Types of applets :(Based on look and Feel)

There are two varieties of applets. The first are those based directly on the Applet

class. These applets use the Abstract Window Toolkit (AWT) to provide the graphic user

interface (or use no GUI at all). This style of applet has been available since Java was first

created.

The second type of applets are those based on the Swing class JApplet. Swing applets use

the Swing classes to provide the GUI. Swing offers a richer and often easier-to-use

user interface than does the AWT. Thus, Swing-based applets are now the most popular.

JApplet inherits Applet, all the features of Applet are also available in Japplet.

Types of Applets (In General) :

Web pages can contain two types of applets which are named after the location at which they

are stored.

1. Local Applet 2. Remote Applet

Local Applets: A local applet is the one that is stored on our own computer system. When

the Web-page has to find a local applet, it doesn't need to retrieve information from the

Internet. A local applet is specified by a path name and a file name as shown below in which

the codebase attribute specifies a path name, whereas the code attribute specifies the name of

the byte-code file that contains the applet's code.

<applet codebase="MyAppPath" code="MyApp.class" width=200 height=200> </applet>

Remote Applets: A remote applet is the one that is located on a remote computer system .

This computer system may be located in the building next door or it may be on the other side

of the world. No matter where the remote applet is located, it's downloaded onto our

computer via the Internet. The browser must be connected to the Internet at the time it needs

to display the remote applet. To reference a remote applet in Web page, we must know the

applet's URL (where it's located on the Web) and any attributes and parameters that we need

to supply. A local applet is specified by a url and a file name as shown below.

<applet codebase="http://www.apoorvacollege.com" code="MyApp.class" width=200

height=200> </applet>

